DSA/DSS

Digital Signature Algorithm / Digital Signature Standard.

Public key (p, q, g, y) where y = g·x mod p Private key (p, q, g, x)

SIGN:
k = random in [1, q-1]
r = g^k mod p mod q
s = k-1 (H(M) + x·r) mod q
--> (r, s)

VERIFY:
a = g^( H(M) · s-1 mod q ) mod p
b = y^( r ·    s-1 mod q ) mod p 
r == (a·b mod p) mod q

Repeat K Attack

s1 = k-1 (H(M1) + x·r) mod q
s2 = k-1 (H(M2) + x·r) mod q

x = (H(M1)s2 - H(M2)s1) · (r·(s1 - s2))-1  mod q
Demonstration
s1 = k-1 (H(M1) + x·r) mod q
s2 = k-1 (H(M2) + x·r) mod q

s1·k = H(M1) + x·r mod q
s2·k = H(M2) + x·r mod q

s1·k - x·r = H(M1) mod q
s2·k - x·r = H(M2) mod q

H(M1) - H(M2) = (s1·k - x·r)-(s2·k - x·r)  mod q
H(M1) - H(M2) = s1·k - x·r -s2·k + x·r     mod q
H(M1) - H(M2) = s1·k - s2·k                mod q
H(M1) - H(M2) = (s1 - s2)·k                mod q

k = (H(M1) - H(M2)) · (s1 - s2)-1  mod q

x·r = s1·k - H(M1)       mod q
x = s1·k - H(M1) · r-1   mod q

x = s1·( (H(M1) - H(M2)) · (s1 - s2)-1 ) - H(M1) · r-1.   mod q

x = (H(M1)s2 - H(M2)s1) · (r·(s1 - s2))-1  mod q

K with Linear Increment Attack

K, K + 1, K + 2, K + 3, ...

Demonstration

K, K + N, K + 2N, K + 3N, ...

Demonstration

Last updated

Was this helpful?